Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653806

RESUMO

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Assuntos
Cóclea , Animais , Camundongos , Cobaias , Humanos , Ratos , Suínos , Células Ciliadas Auditivas , Microscopia de Fluorescência , Aprendizado de Máquina
2.
Nat Commun ; 15(1): 1896, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429256

RESUMO

Inhibition of Notch signalling with a gamma-secretase inhibitor (GSI) induces mammalian hair cell regeneration and partial hearing restoration. In this proof-of-concept Phase I/IIa multiple-ascending dose open-label trial (ISRCTN59733689), adults with mild-moderate sensorineural hearing loss received 3 intratympanic injections of GSI LY3056480, in 1 ear over 2 weeks. Phase I primary outcome was safety and tolerability. Phase lla primary outcome was change from baseline to 12 weeks in average pure-tone air conduction threshold across 2,4,8 kHz. Secondary outcomes included this outcome at 6 weeks and change from baseline to 6 and 12 weeks in pure-tone thresholds at individual frequencies, speech reception thresholds (SRTs), Distortion Product Otoacoustic Emissions (DPOAE) amplitudes, Signal to Noise Ratios (SNRs) and distribution of categories normal, present-abnormal, absent and Hearing Handicap Inventory for Adults/Elderly (HHIA/E). In Phase I (N = 15, 1 site) there were no severe nor serious adverse events. In Phase IIa (N = 44, 3 sites) the average pure-tone threshold across 2,4,8 kHz did not change from baseline to 6 and 12 weeks (estimated change -0.87 dB; 95% CI -2.37 to 0.63; P = 0.252 and -0.46 dB; 95% CI -1.94 to 1.03; P = 0.545, respectively), nor did the means of secondary measures. DPOAE amplitudes, SNRs and distribution of categories did not change from baseline to 6 and 12 weeks, nor did SRTs and HHIA/E scores. Intratympanic delivery of LY3056480 is safe and well-tolerated; the trial's primary endpoint was not met.


Assuntos
Secretases da Proteína Precursora do Amiloide , Perda Auditiva Neurossensorial , Adulto , Idoso , Humanos , Audiometria de Tons Puros , Limiar Auditivo/fisiologia , Perda Auditiva Neurossensorial/tratamento farmacológico , Emissões Otoacústicas Espontâneas/fisiologia
3.
bioRxiv ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076928

RESUMO

Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing 'synaptopathy 'and hearing loss. Co-cultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that newly formed IHC synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When older organs of Corti were plated, synaptic activity probed by deconvolution, showed more mature release properties, closer to the highly specialized mode of IHC synaptic transmission that is crucial for coding the sound signal. This newly developed functional assessment of regenerated IHC synapses provides a powerful tool for testing approaches to improve synapse regeneration.

4.
Cell Rep ; 42(11): 113421, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952154

RESUMO

We explore the changes in chromatin accessibility and transcriptional programs for cochlear hair cell differentiation from postmitotic supporting cells using organoids from postnatal cochlea. The organoids contain cells with transcriptional signatures of differentiating vestibular and cochlear hair cells. Construction of trajectories identifies Lgr5+ cells as progenitors for hair cells, and the genomic data reveal gene regulatory networks leading to hair cells. We validate these networks, demonstrating dynamic changes both in expression and predicted binding sites of transcription factors (TFs) during organoid differentiation. We identify known regulators of hair cell development, Atoh1, Pou4f3, and Gfi1, and the analysis predicts the regulatory factors Tcf4, an E-protein and heterodimerization partner of Atoh1, and Ddit3, a CCAAT/enhancer-binding protein (C/EBP) that represses Hes1 and activates transcription of Wnt-signaling-related genes. Deciphering the signals for hair cell regeneration from mammalian cochlear supporting cells reveals candidates for hair cell (HC) regeneration, which is limited in the adult.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cóclea , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Organoides/metabolismo , Mamíferos/metabolismo
5.
Front Cell Dev Biol ; 9: 710159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485296

RESUMO

Sensorineural hearing loss is prevalent within society affecting the quality of life of 460 million worldwide. In the majority of cases, this is due to insult or degeneration of mechanosensory hair cells in the cochlea. In adult mammals, hair cell loss is irreversible as sensory cells are not replaced spontaneously. Genetic inhibition of Notch signaling had been shown to induce hair cell formation by transdifferentiation of supporting cells in young postnatal rodents and provided an impetus for targeting Notch pathway with small molecule inhibitors for hearing restoration. Here, the oto-regenerative potential of different γ-secretase inhibitors (GSIs) was evaluated in complementary assay models, including cell lines, organotypic cultures of the organ of Corti and cochlear organoids to characterize two novel GSIs (CPD3 and CPD8). GSI-treatment induced hair cell gene expression in all these models and was effective in increasing hair cell numbers, in particular outer hair cells, both in baseline conditions and in response to ototoxic damage. Hair cells were generated from transdifferentiation of supporting cells. Similar findings were obtained in cochlear organoid cultures, used for the first time to probe regeneration following sisomicin-induced damage. Finally, effective absorption of a novel GSI through the round window membrane and hair cell induction was attained in a whole cochlea culture model and in vivo pharmacokinetic comparisons of transtympanic delivery of GSIs and different vehicle formulations were successfully conducted in guinea pigs. This preclinical evaluation of targeting Notch signaling with novel GSIs illustrates methods of characterization for hearing restoration molecules, enabling translation to more complex animal studies and clinical research.

6.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544869

RESUMO

Mutations in the gene for Norrie disease protein (Ndp) cause syndromic deafness and blindness. We show here that cochlear function in an Ndp knockout mouse deteriorated with age: At P3-P4, hair cells (HCs) showed progressive loss of Pou4f3 and Gfi1, key transcription factors for HC maturation, and Myo7a, a specialized myosin required for normal function of HC stereocilia. Loss of expression of these genes correlated to increasing HC loss and profound hearing loss by 2 mo. We show that overexpression of the Ndp gene in neonatal supporting cells or, remarkably, up-regulation of canonical Wnt signaling in HCs rescued HCs and cochlear function. We conclude that Ndp secreted from supporting cells orchestrates a transcriptional network for the maintenance and survival of HCs and that increasing the level of ß-catenin, the intracellular effector of Wnt signaling, is sufficient to replace the functional requirement for Ndp in the cochlea.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho/fisiologia , Células Ciliadas Auditivas/patologia , Perda Auditiva/patologia , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Fator de Transcrição Brn-3C/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Ligação a DNA/genética , Feminino , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/etiologia , Perda Auditiva/metabolismo , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição Brn-3C/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt
7.
Stem Cell Reports ; 16(4): 797-809, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33770497

RESUMO

Across species, expression of the basic helix-loop-helix transcription factor ATOH1 promotes differentiation of cochlear supporting cells to sensory hair cells required for hearing. In mammals, this process is limited to development, whereas nonmammalian vertebrates can also regenerate hair cells after injury. The mechanistic basis for this difference is not fully understood. Hypermethylated in cancer 1 (HIC1) is a transcriptional repressor known to inhibit Atoh1 in the cerebellum. We therefore investigated its potential role in cochlear hair cell differentiation. We find that Hic1 is expressed throughout the postnatal murine cochlear sensory epithelium. In cochlear organoids, Hic1 knockdown induces Atoh1 expression and promotes hair cell differentiation, while Hic1 overexpression hinders differentiation. Wild-type HIC1, but not the DNA-binding mutant C521S, suppresses activity of the Atoh1 autoregulatory enhancer and blocks its responsiveness to ß-catenin activation. Our findings reveal the importance of HIC1 repression of Atoh1 in the cochlea, which may be targeted to promote hair cell regeneration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Transcrição Gênica , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Epitélio/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Audição/fisiologia , Humanos , Camundongos Endogâmicos C57BL , Organoides/metabolismo , Ligação Proteica , Fatores de Transcrição TCF/metabolismo , Fatores de Tempo , beta Catenina/metabolismo
8.
Sci Rep ; 11(1): 2937, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536466

RESUMO

Auditory neuropathy is caused by the loss of afferent input to the brainstem via the components of the neural pathway comprising inner hair cells and the first order neurons of the spiral ganglion. Recent work has identified the synapse between cochlear primary afferent neurons and sensory hair cells as a particularly vulnerable component of this pathway. Loss of these synapses due to noise exposure or aging results in the pathology identified as hidden hearing loss, an initial stage of cochlear dysfunction that goes undetected in standard hearing tests. We show here that repulsive axonal guidance molecule a (RGMa) acts to prevent regrowth and synaptogenesis of peripheral auditory nerve fibers with inner hair cells. Treatment of noise-exposed animals with an anti-RGMa blocking antibody regenerated inner hair cell synapses and resulted in recovery of wave-I amplitude of the auditory brainstem response, indicating effective reversal of synaptopathy.


Assuntos
Proteínas Ligadas por GPI/antagonistas & inibidores , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Proteínas do Tecido Nervoso/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Estimulação Acústica/métodos , Animais , Limiar Auditivo , Cóclea/citologia , Cóclea/efeitos dos fármacos , Cóclea/patologia , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/patologia , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/patologia
9.
PLoS One ; 15(10): e0238578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33001981

RESUMO

The spiral ganglion neurons constitute the primary connection between auditory hair cells and the brain. The spiral ganglion afferent fibers and their synapse with hair cells do not regenerate to any significant degree in adult mammalian ears after damage. We have investigated gene expression changes after kainate-induced disruption of the synapses in a neonatal cochlear explant model in which peripheral fibers and the afferent synapse do regenerate. We compared gene expression early after damage, during regeneration of the fibers and synapses, and after completion of in vitro regeneration. These analyses revealed a total of 2.5% differentially regulated transcripts (588 out of 24,000) based on a threshold of p<0.005. Inflammatory response genes as well as genes involved in regeneration of neural circuits were upregulated in the spiral ganglion neurons and organ of Corti, where the hair cells reside. Prominent genes upregulated at several time points included genes with roles in neurogenesis (Elavl4 and Sox21), neural outgrowth (Ntrk3 and Ppp1r1c), axonal guidance (Rgmb and Sema7a), synaptogenesis (Nlgn2 and Psd2), and synaptic vesicular function (Syt8 and Syn1). Immunohistochemical and in situ hybridization analysis of genes that had not previously been described in the cochlea confirmed their cochlear expression. The time course of expression of these genes suggests that kainate treatment resulted in a two-phase response in spiral ganglion neurons: an acute response consistent with inflammation, followed by an upregulation of neural regeneration genes. Identification of the genes activated during regeneration of these fibers suggests candidates that could be targeted to enhance regeneration in adult ears.


Assuntos
Células Ciliadas Auditivas/fisiologia , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Neurônios Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Expressão Gênica/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Inflamação/genética , Inflamação/fisiopatologia , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurogênese/genética , Neurogênese/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia , Sinapses/fisiologia , Técnicas de Cultura de Tecidos
10.
Front Mol Neurosci ; 13: 87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765216

RESUMO

Sensorineural hearing loss (SNHL) caused by noise exposure and attendant loss of glutamatergic synapses between cochlear spiral ganglion neurons (SGNs) and hair cells is the most common sensory deficit worldwide. We show here that systemic administration of a bisphosphonate to mice 24 h after synaptopathic noise exposure regenerated synapses between inner hair cells and SGNs and restored cochlear function. We further demonstrate that this effect is mediated by inhibition of the mevalonate pathway. These results are highly significant because they suggest that bisphosphonates could reverse cochlear synaptopathy for the treatment of SNHL.

11.
Stem Cells ; 38(7): 890-903, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246510

RESUMO

Sensorineural hearing loss is irreversible and can be caused by loss of auditory neurons. Regeneration of neural cells from endogenous cells may offer a future tool to restore the auditory circuit and to enhance the performance of implantable hearing devices. Neurons and glial cells in the peripheral nervous system are closely related and originate from a common progenitor. Prior work in our lab indicated that in the early postnatal mouse inner ear, proteolipid protein 1 (Plp1) expressing glial cells could act as progenitor cells for neurons in vitro. Here, we used a transgenic mouse model to transiently overexpress Lin28, a neural stem cell regulator, in Plp1-positive glial cells. Lin28 promoted proliferation and conversion of auditory glial cells into neurons in vitro. To study the effects of Lin28 on endogenous glial cells after loss of auditory neurons in vivo, we produced a model of auditory neuropathy by selectively damaging auditory neurons with ouabain. After neural damage was confirmed by the auditory brainstem response, we briefly upregulated the Lin28 in Plp1-expressing inner ear glial cells. One month later, we analyzed the cochlea for neural marker expression by quantitative RT-PCR and immunohistochemistry. We found that transient Lin28 overexpression in Plp1-expressing glial cells induced expression of neural stem cell markers and subsequent conversion into neurons. This suggests the potential for inner ear glia to be converted into neurons as a regeneration therapy for neural replacement in auditory neuropathy.


Assuntos
Orelha Interna , Perda Auditiva Central , Células-Tronco Neurais , Animais , Orelha Interna/fisiologia , Perda Auditiva Central/metabolismo , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo
12.
Neuroscience ; 422: 146-160, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678344

RESUMO

The vestibular system of the inner ear contains Type I and Type II hair cells (HCs) generated from sensory progenitor cells; however, little is known about how the HC subtypes are formed. Sox2 (encoding SRY-box 2) is expressed in Type II, but not in Type I, HCs. The present study aimed to investigate the role of SOX2 in cell fate determination in Type I vs. Type II HCs. First, we confirmed that Type I HCs developed from Sox2-expressing cells through lineage tracing of Sox2-positive cells using a CAG-tdTomato reporter mouse crossed with a Sox2-CreER mouse. Then, Sox2 loss of function was induced in HCs, using Sox2flox transgenic mice crossed with a Gfi1-Cre driver mouse. Knockout of Sox2 in HCs increased the number of Type I HCs and decreased the number of Type II HCs, while the total number of HCs and Sox2-positive supporting cells did not change. In addition, the effect of Sox2-knockout persisted into adulthood, resulting in an increased number of Type I HCs. These results demonstrate that SOX2 plays a critical role in the determination of Type II vs. Type I HC fate. The results suggested that Sox2 is a potential target for generating Type I HCs, which may be important for regenerative strategies for balance disorders.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Células Ciliadas Vestibulares/fisiologia , Fatores de Transcrição SOXB1/fisiologia , Animais , Contagem de Células , Linhagem da Célula/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição SOXB1/genética , Sáculo e Utrículo/citologia
13.
J Neurophysiol ; 122(5): 1962-1974, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533018

RESUMO

Optogenetics comprise a promising alternative to electrical stimulation for characterization of neural circuits and for the next generation of neural prostheses. Optogenetic stimulation relies on expression of photosensitive microbial proteins in animal cells to initiate a flow of ions into the cells in response to visible light. Here, we generated a novel transgenic mouse model in which we studied the optogenetic activation of spiral ganglion neurons, the primary afferent neurons of the auditory system, and showed a strong optogenetic response, with a similar amplitude as the acoustically evoked response. A twofold increase in the level of channelrhodopsin expression significantly increased the photosensitivity at both the single cell and organismal levels but also partially compromised the native electrophysiological properties of the neurons. The importance of channelrhodopsin expression level to optogenetic stimulation, revealed by these quantitative measurements, will be significant for the characterization of neural circuitry and for the use of optogenetics in neural prostheses.NEW & NOTEWORTHY This study reveals a dose-response relationship between channelrhodopsin expression and optogenetic excitation. Both single cell and organismal responses depend on the expression level of the heterologous protein. Expression level of the opsin is thus an important variable in determining the outcome of an optogenetic experiment. These results are key to the implementation of neural prostheses based on optogenetics, such as next generation cochlear implants, which would use light to elicit a neural response to sound.


Assuntos
Channelrhodopsins/fisiologia , Cóclea/fisiologia , Fenômenos Eletrofisiológicos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Neurônios Aferentes/fisiologia , Optogenética , Gânglio Espiral da Cóclea/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Modelos Animais
14.
Development ; 146(17)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477580

RESUMO

The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.


Assuntos
Diferenciação Celular/fisiologia , Células Ciliadas Auditivas Internas/metabolismo , Organoides/citologia , Adulto , Animais , Animais Recém-Nascidos , Avaliação Pré-Clínica de Medicamentos/métodos , Perda Auditiva/tratamento farmacológico , Perda Auditiva/genética , Perda Auditiva/metabolismo , Humanos , Recém-Nascido , Mamíferos/embriologia , Mamíferos/crescimento & desenvolvimento , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regeneração
15.
Front Cell Dev Biol ; 7: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873406

RESUMO

The mouse cochlea contains approximately 15,000 hair cells. Its dimensions and location, and the small number of hair cells, make mechanistic, developmental and cellular replacement studies difficult. We recently published a protocol to expand and differentiate murine neonatal cochlear progenitor cells into 3D organoids that recapitulate developmental pathways and can generate large numbers of hair cells with intact stereociliary bundles, molecular markers of the native cells and mechanotransduction channel activity, as indicated by FM1-43 uptake. Here, we elaborate on the method and application of these Lgr5-positive cochlear progenitors, termed LCPs, to the study of inner ear development and differentiation. We demonstrate the use of these cells for testing several drug candidates, gene silencing and overexpression, as well as genomic modification using CRISPR/Cas9. We thus establish LCPs as a valuable in vitro tool for the analysis of progenitor cell manipulation and hair cell differentiation.

16.
Development ; 145(23)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30389848

RESUMO

Lack of sensory hair cell (HC) regeneration in mammalian adults is a major contributor to hearing loss. In contrast, the neonatal mouse cochlea retains a transient capacity for regeneration, and forced Wnt activation in neonatal stages promotes supporting cell (SC) proliferation and induction of ectopic HCs. We currently know little about the temporal pattern and underlying mechanism of this age-dependent regenerative response. Using an in vitro model, we show that Wnt activation promotes SC proliferation following birth, but prior to postnatal day (P) 5. This age-dependent decline in proliferation occurs despite evidence that the Wnt pathway is postnatally active and can be further enhanced by Wnt stimulators. Using an in vivo mouse model and RNA sequencing, we show that proliferation in the early neonatal cochlea is correlated with a unique transcriptional response that diminishes with age. Furthermore, we find that augmenting Wnt signaling through the neonatal stages extends the window for HC induction in response to Notch signaling inhibition. Our results suggest that the downstream transcriptional response to Wnt activation, in part, underlies the regenerative capacity of the mammalian cochlea.


Assuntos
Cóclea/fisiologia , Mamíferos/fisiologia , Regeneração/genética , Transcrição Gênica , Via de Sinalização Wnt/genética , Animais , Animais Recém-Nascidos , Proliferação de Células , Transdiferenciação Celular , Embrião de Mamíferos/citologia , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Células Labirínticas de Suporte/citologia , Células Labirínticas de Suporte/metabolismo , Masculino , Camundongos , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo
17.
Eur J Neurosci ; 48(10): 3299-3316, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30270571

RESUMO

In mammals, cochlear hair cells are not regenerated once they are lost, leading to permanent hearing deficits. In other vertebrates, the adjacent supporting cells act as a stem cell compartment, in that they both proliferate and differentiate into de novo auditory hair cells. Although there is evidence that mammalian cochlear supporting cells can differentiate into new hair cells, the signals that regulate this process are poorly characterized. We hypothesize that signaling from the epidermal growth factor receptor (EGFR) family may play a role in cochlear regeneration. We focus on one such member, ERBB2, and report the effects of expressing a constitutively active ERBB2 receptor in neonatal mouse cochlear supporting cells, using viruses and transgenic expression. Lineage tracing with fluorescent reporter proteins was used to determine the relationships between cells with active ERBB2 signaling and cells that divided or differentiated into hair cells. In vitro, individual supporting cells harbouring a constitutively active ERBB2 receptor appeared to signal to their neighbouring supporting cells, inducing them to down-regulate a supporting cell marker and to proliferate. In vivo, we found supernumerary hair cell-like cells near supporting cells that expressed ERBB2 receptors. Both supporting cell proliferation and hair cell differentiation were largely reproduced in vitro using small molecules that we show also activate ERBB2. Our data suggest that signaling from the receptor tyrosine kinase ERBB2 can drive the activation of secondary signaling pathways to regulate regeneration, suggesting a new model where an interplay of cell signaling regulates regeneration by endogenous stem-like cells.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Ciliadas Auditivas/fisiologia , Receptor ErbB-2/fisiologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Transgênicos
18.
Nat Commun ; 9(1): 2184, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872041

RESUMO

Programmable nucleases can introduce precise changes to genomic DNA through homology-directed repair (HDR). Unfortunately, HDR is largely restricted to mitotic cells, and is typically accompanied by an excess of stochastic insertions and deletions (indels). Here we present an in vivo base editing strategy that addresses these limitations. We use nuclease-free base editing to install a S33F mutation in ß-catenin that blocks ß-catenin phosphorylation, impedes ß-catenin degradation, and upregulates Wnt signaling. In vitro, base editing installs the S33F mutation with a 200-fold higher editing:indel ratio than HDR. In post-mitotic cells in mouse inner ear, injection of base editor protein:RNA:lipid installs this mutation, resulting in Wnt activation that induces mitosis of cochlear supporting cells and cellular reprogramming. In contrast, injection of HDR agents does not induce Wnt upregulation. These results establish a strategy for modifying posttranslational states in signaling pathways, and an approach to precision editing in post-mitotic tissues.


Assuntos
Quebras de DNA de Cadeia Dupla , Células Ciliadas Auditivas Internas/metabolismo , Mutação/genética , Reparo de DNA por Recombinação , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitose/genética , Células NIH 3T3 , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
19.
Sci Data ; 4: 170112, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28850106

RESUMO

In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.


Assuntos
Perfilação da Expressão Gênica , Genoma , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas , Especificidade da Espécie
20.
Am J Otolaryngol ; 38(5): 518-520, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28687426

RESUMO

PURPOSE: A transcanal endoscopic infracochlear surgical approach to the internal auditory canal (IAC) in a human temporal bone model has previously been described. However, the proportion of patients with favorable anatomy for this novel surgical technique remains unknown. Herein, we perform a quantitative analysis of the transcanal endoscopic infracochlear corridor to the IAC based on computed tomography. MATERIALS AND METHODS: High resolution computed tomography scans of adult temporal bones were measured to determine the accessibility of the IAC when using an endoscopic transcanal, cochlear-sparing surgical corridor. RESULTS: This approach to the IAC was feasible in 92% (35 of 38) specimens based on a minimum distance of 3mm between the basilar turn of the cochlear and the great vessels (jugular bulb and carotid artery). CONCLUSIONS: Infracochlear access to the IAC is feasible in the majority of adult temporal bones and has implications for future hearing preservation drug delivery approaches to the IAC.


Assuntos
Orelha Interna/diagnóstico por imagem , Orelha Interna/cirurgia , Endoscopia , Neuroma Acústico/cirurgia , Osso Temporal/diagnóstico por imagem , Adulto , Humanos , Neuroma Acústico/diagnóstico por imagem , Seleção de Pacientes , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...